Regulation of flowering time by Arabidopsis MSI1.
نویسندگان
چکیده
The transition to flowering is tightly controlled by endogenous programs and environmental signals. We found that MSI1 is a novel flowering-time gene in Arabidopsis. Both partially complemented msi1 mutants and MSI1 antisense plants were late flowering, whereas ectopic expression of MSI1 accelerated flowering. Physiological experiments revealed that MSI1 is similar to genes from the autonomous promotion of flowering pathway. Expression of most known flowering-time genes did not depend on MSI1, but the induction of SOC1 was delayed in partially complemented msi1 mutants. Delayed activation of SOC1 is often caused by increased expression of the floral repressor FLC. However, MSI1 function is independent of FLC. MSI1 is needed to establish epigenetic H3K4 di-methylation and H3K9 acetylation marks in SOC1 chromatin. The presence of these modifications correlates with the high levels of SOC1 expression that induce flowering in Arabidopsis. Together, the control of flowering time depends on epigenetic mechanisms for the correct expression of not only the floral repressor FLC, but also the floral activator SOC1.
منابع مشابه
Arabidopsis MSI1 functions in photoperiodic flowering time control
Appropriate timing of flowering is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals such as photoperiod, vernalization or light quality, ambient temperature and biotic as well as abiotic stresses. The key florigenic signal FLOWERING LOCUS T (FT) is regulated by several flowerin...
متن کاملPolycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway.
Polycomb-group (PcG) proteins form a cellular memory by maintaining developmental regulators in a transcriptionally repressed state. We identified a novel flowering gene that is under PcG control in Arabidopsis--the MADS-box gene AGL19. AGL19 expression is maintained at very low levels by the PcG proteins MSI1, CLF, and EMF2, and AGL19 is partly responsible for the early flowering phenotype of ...
متن کاملThe WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling.
MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and pr...
متن کاملDifferential Interactions of the Autonomous Pathway RRM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets
We have recently shown that two proteins containing RRM-type RNA-binding domains, FCA and FPA, originally identified through their role in flowering time control in Arabidopsis, silence transposons and other repeated sequences in the Arabidopsis genome. In flowering control, FCA and FPA function in the autonomous pathway with conserved chromatin regulators, the histone demethylase FLD and the M...
متن کاملGene regulatory variation mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis.
Steep environmental gradients provide ideal settings for studies of potentially adaptive phenotypic and genetic variation in plants. The accurate timing of flowering is crucial for reproductive success and is regulated by several pathways, including the vernalization pathway. Among the numerous genes known to enable flowering in response to vernalization, the most prominent is FLOWERING LOCUS C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 133 9 شماره
صفحات -
تاریخ انتشار 2006